l5kit.cle.metric_set module¶
- class l5kit.cle.metric_set.BaseMetricSet¶
Bases:
abc.ABC
Base class interface for the metric sets.
- abstract evaluate(sim_outputs: List[l5kit.simulation.unroll.SimulationOutputCLE]) None ¶
Run the CLE (Closed-loop Evaluator) on simulated scenes.
- Parameters
sim_outputs – outputs from the simulator.
- abstract get_results() Dict[str, Any] ¶
Perform all required aggregations and returns a dictionary composed by all results.
- metric_prefix: str¶
The prefix that will identify this metric
- class l5kit.cle.metric_set.L5MetricSet(metric_prefix: str = 'L5')¶
Bases:
l5kit.cle.metric_set.BaseMetricSet
This class is responsible for computing a set of metric parametrization for the L5Kit.
- Parameters
metric_prefix – this is a prefix that will identify the metric set being used.
- aggregate_failed_frames() Dict[str, Any] ¶
This method will aggregate the failed scenes and will return a dictionary indexed by the validator name associated with a list with FailedFrame items containing the scene_id and the frame index that triggered the validator.
- build_composite_metrics() List[l5kit.cle.composite_metrics.SupportsCompositeMetricCompute] ¶
Return a list of composite metrics that should be computed. Composite metrics are metrics that depend upon metrics and validator results.
- abstract build_metrics() List[l5kit.cle.metrics.SupportsMetricCompute] ¶
Returns a list of metrics that will be computed.
- build_validators() List[l5kit.cle.validators.SupportsMetricValidate] ¶
Returns a list of validators that will operate on the computed metrics.
- evaluate(sim_outputs: List[l5kit.simulation.unroll.SimulationOutputCLE]) None ¶
Run the CLE (Closed-loop Evaluator) on simulated scenes.
- Parameters
sim_outputs – outputs from the simulator.
- get_results() Dict[str, Any] ¶
Perform all required aggregations and returns a dictionary composed by all results.
- get_validator_interventions() List[str] ¶
Returns a list of validators that are considered an intervention.
- metric_prefix: str¶
The prefix that will identify this metric
- reset() None ¶
Reset the current state of the CLE (Closed-loop Evaluator).