l5kit.environment.callbacks module¶
- class l5kit.environment.callbacks.L5KitEvalCallback(eval_env: gym.core.Env, eval_freq: int = 10000, n_eval_episodes: int = 10, n_eval_envs: int = 4, metric_set: Optional[l5kit.cle.metric_set.L5MetricSet] = None, enable_scene_type_aggregation: Optional[bool] = False, scene_id_to_type_path: Optional[str] = None, prefix: str = 'eval', verbose: int = 0)¶
Bases:
stable_baselines3.common.callbacks.EvalCallback
Callback for evaluating an agent using L5Kit evaluation metrics.
- Parameters
eval_env – The environment used for initialization
n_eval_episodes – The number of episodes to test the agent
eval_freq – Evaluate the agent every
eval_freq
call of the callback.metric_set – computes a set of metric parametrization for the L5Kit environment
enable_scene_type_aggregation – enable evaluation according to scene type
scene_id_to_type_path – path to the csv file mapping scene id to scene type
prefix – the prefix to save the computed metrics
verbose –
- static compute_ade_fde(metric_set: l5kit.cle.metric_set.L5MetricSet) Tuple[float, float] ¶
Aggregate the Average displacement error (ADE) and Final displacement error (FDE) of the simulation outputs.
- Returns
Tuple [ADE, FDE]
- evaluate_scenes() None ¶
Evaluate the episode outputs for n_eval_episodes episodes.
- static get_scene_types(scene_id_to_type_path: str) List[List[str]] ¶
Construct a list mapping scene types to their corresponding types.
- Parameters
scene_id_to_type_path – path to the mapping.
- Returns
list of scene type tags per scene