l5kit.environment.reward module¶
- class l5kit.environment.reward.L2DisplacementYawReward(reward_prefix: str = 'L2DisplacementYaw', metric_set: Optional[l5kit.cle.metric_set.L5MetricSet] = None, enable_clip: bool = True, rew_clip_thresh: float = 15.0, use_yaw: Optional[bool] = True, yaw_weight: Optional[float] = 1.0)¶
Bases:
l5kit.environment.reward.Reward
This class is responsible for calculating a reward based on (1) L2 displacement error on the (x, y) coordinates (2) Closest angle error on the yaw coordinate during close loop simulation within the gym-compatible L5Kit environment.
- Parameters
reward_prefix – the prefix that will identify this reward class
metric_set – the set of metrics to compute
enable_clip – flag to determine whether to clip reward
rew_clip_thresh – the threshold to clip the reward
use_yaw – flag to penalize the yaw prediction
yaw_weight – weight of the yaw error
- get_reward(frame_index: int, simulated_outputs: List[l5kit.simulation.unroll.SimulationOutputCLE]) Dict[str, float] ¶
Get the reward for the given step in close loop training.
- Parameters
frame_index – the frame index for which reward is to be calculated
simulated_outputs – the object contain the ego target and prediction attributes
- Returns
the dictionary containing total reward and individual components that make up the reward
- reset() None ¶
Reset the closed loop evaluator when a new episode starts.
- reward_prefix: str¶
The prefix that will identify this reward class
- static slice_simulated_output(index: int, simulated_outputs: List[l5kit.simulation.unroll.SimulationOutputCLE]) List[l5kit.simulation.unroll.SimulationOutputCLE] ¶
Slice the simulated output at a particular frame index. This prevent calculating metric over all frames.
- Parameters
index – the frame index at which the simulation outputs is to be sliced
simulated_outputs – the object contain the ego target and prediction attributes
- Returns
the sliced simulation output
- class l5kit.environment.reward.Reward¶
Bases:
abc.ABC
Base class interface for gym environment reward.
- abstract get_reward(frame_index: int, simulated_outputs: List[l5kit.simulation.unroll.SimulationOutputCLE]) Dict[str, float] ¶
Return the reward at a particular time-step during the episode.
- Parameters
frame_index – the frame index for which reward is to be calculated
simulated_outputs – the object contain the ego target and prediction attributes
- Returns
reward at a particular frame index (time-step) during the episode containing total reward and individual components that make up the reward.
- abstract reset() None ¶
Reset the reward state when new episode starts.
- reward_prefix: str¶
The prefix that will identify this reward class